
John C. Linford
28 May 2019

Cross-Platform
Performance

Engineering with
Arm Allinea Studio

2 © 2019 Arm Limited

Outline

Slides [http://bit.ly/arm-alcf-may19]

• Performance Engineering Concepts
• Arm Forge (DDT and MAP)
• Arm Performance Reports
• Arm Compilers and Libraries
• Real World Case Studies
• Hands on kickoff

Hands-on

• AWS Graviton cluster available for 24hrs!
• Pick a student number 1 … 20
• Replace XX with your student number
• ssh student0XX@108.128.237.67

• Password: Tr@ining0XX
• Grab a compute node (8 cores per node):

• srun -n 8 --pty $SHELL
• Remember to zero-pad your student number to

three places, e.g. “3” becomes “003”
• We strongly recommend you download and

install the Arm Forge Remote Client.

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/downloads/download-arm-forge

3 © 2019 Arm Limited

OpenFOAM and ParaView across the Arm ecosystem
Cross-platform ecosystem and standards make this possible

4 © 2019 Arm Limited

Identifying and resolving performance issues

No

No

Profile
Yes

Yes

Yes

Refine the

Profile

File I/O

Memory

Compute

No

No

Buffers, data formats,

in-memory filesystems

Collectives, blocking,

non-blocking, topology,

load balance

Bandwidth/latency,

cache utilization

Vectors, branches,

integer, floating point

Yes

Identify Hotspots Focus Optimization

-50x

-10x

-5x

-2x

Communication

5 © 2019 Arm Limited

Arm’s solution for HPC application development and porting
Commercial tools for aarch64, x86_64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools

DDT MAP

FORGE

PERFORMANCE
REPORTS

C/C++ & FORTRAN
COMPILER

PERFORMANCE
LIBRARIES

6 © 2019 Arm Limited

Use the Arm Forge Remote Client
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/downloads/download-arm-forge

Ultimately, that’s where the tools will run.

On the head node
(interactive mode + reverse connect)

On the compute node
(offline OR interactive mode)

Remote client
(remote launch + reverse

connect)

7 © 2019 Arm Limited

Arm Forge somewhere over the Pacific at 41,000ft and 550MPH

8 © 2019 Arm Limited

Launching the Arm Forge Remote Client
The remote client is a stand-alone application that runs on your local system

Install the Arm Remote Client (Linux, macOS, Windows)
• https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Connect to the cluster with the remote client
• Open Forge Remote Client
• Create a new connection: Remote Launch è Configure è Add

– Hostname: <username>@<hostname>
– Remote installation directory: </path/to/arm-forge/X.Y/>

• Connect!

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

9 © 2019 Arm Limited

Remote connect

10 © 2019 Arm Limited

Arm Forge = DDT + MAP
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory

debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

11 © 2019 Arm Limited

DDT: Production-scale debugging
Isolate and investigate faults at scale

• Which MPI rank misbehaved?
• Merge stacks from processes and threads
• Sparklines comparing data across processes

• What source locations are related to the problem?
• Integrated source code editor
• Dynamic data structure visualization

• How did it happen?
• Parse diagnostic messages
• Trace variables through execution

• Why did it happen?
• Unique “Smart Highlighting”
• Experiment with variable values

12 © 2019 Arm Limited

DDT: Feature Highlights
Switch between

MPI ranks and
OpenMP threads

Display pending
communications

Visualise data
structures

Connect to
continuous
integration

13 © 2019 Arm Limited

Multi-dimensional Array Viewer
What does your data look like at runtime?

• View arrays
• On a single process
• Or distributed on many ranks

• Use metavariables to browse the array
• Example: $i and $j
• Metavariables are unrelated to the variables in

your program.
• The bounds to view can be specified
• Visualise draws a 3D representation of the

array

• Data can also be filtered
• “Only show if”: $value > 0 for example $value

being a specific element of the array

14 © 2019 Arm Limited

Memory debugging menu in Arm DDT

When manual linking is used,
untick “Preload” box

15 © 2019 Arm Limited

Arm DDT Feature Details

• Scalable debugging of threaded codes (with OpenMP or pthreads)

• Support for asynchronous thread control

• Memory debugging: error detection, OOB detection (guard pages), leak detection

• Single or multiple Linux corefiles.

• Core files are well supported on aarch64,

• Can selectively dump core memory from specified processes or threads.

• Standard core files as generated by all major Linux distributions. Lightweight core files not supported.

• Scalable launch via many vendor specific launch infrastructures, e.g. PMIx or MPIR

16 © 2019 Arm Limited

Application Debug Information
• DWARF 4 is fully supported on aarch64.

• Arm and partners regularly verify debug information against GDB and Arm regression test suites.

• The GCC and Arm compilers produce debug information for applications that are
compiled with at least the “-O -g” code optimization.

• Addition of architecture-specific flags like -march, -mcpu etc. further optimize the
produced binaries to take full advantage of distinguishing features of the ThunderX2
CPU without interfering with debugging.

• The debugging information supports source context including program variables and
stack traces. The runtime libraries of C/C++ and Fortran also retain key debugging
information such as stack frame information.

17 © 2019 Arm Limited

Arm DDT cheat sheet
Start DDT interactively, remotely, or from a batch script.

• Load the environment module:
• $ module load forge

• Prepare the code:
• $ mpicc -O0 -g myapp.c -o myapp.exe
• $ mpfort -O0 -g myapp.f -o myapp.exe

• Start DDT in interactive mode:
• $ ddt mpirun -n 8 ./myapp.exe arg1 arg2 …

• Or use reverse connect:
• On the login node:

• $ ddt &
• (or use the remote client)
• Then, edit the job script to run the following command and submit:

• ddt --connect mpirun -n 8 ./myapp.exe arg1 arg2 …

18 © 2019 Arm Limited

Run DDT in offline mode
Run the application under DDT and halt or report when a failure occurs.

• You can run the debugger in non-interactive mode
• For long-running jobs
• For automated testing, continuous integration…

• To do so, use the following arguments:
• $ ddt --offline --output=report.html mpirun ./jacobi_omp_mpi_gnu.exe

• --offline enable non-interactive debugging
• --output specifies the name and output of the non-interactive debugging session

• Html
• Txt

• Add --mem-debug to enable memory debugging and memory leak detection

ddt --offline -o jacobi_omp_mpi_gnu_debug.txt \
--trace-at _jacobi.F90:83,residual \
srun ./jacobi_omp_mpi_gnu.exe

19 © 2019 Arm Limited

DDT command line options
$ ddt --help
Arm Forge 18.2.1 - Arm DDT

Usage: ddt [OPTION...] [PROGRAM [PROGRAM_ARGS]]
ddt [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]

--connect Reverse Connect (launch as a server and wait)
--attach=[host1:]pid1,[host2:]pid2... [PROGRAM] attach to PROGRAM being run by list of host:pid
--attach-mpi=MPI_PID [--subset=rank1,rank2,rank3,...] [PROGRAM] attach to processes in an MPI program.
--break-at=LOCATION[,START:EVERY:STOP] [if CONDITION] set a breakpoint at LOCATION
--trace-at=LOCATION[,START:EVERY:STOP],VAR1,VAR2,... set a tracepoint at LOCATION
--cuda enable CUDA
--mem-debug[=(fast|balanced|thorough|off)] configure memory debugging (defaults to fast)
--mpiargs=ARGUMENTS command line arguments to pass to mpirun
-n, --np, --processes=NUMPROCS specify the number of MPI processes
--nodes=NUMNODES configure the number of nodes for MPI jobs
--procs-per-node=PROCS configure the number of processes per node
--offline run through program without user interaction
-s, --silent don't write unnecessary output to the command line

20 © 2019 Arm Limited

Arm MAP: Production-scale application profiling
Identify bottlenecks and rewrite code for better performance

• Run with the representative workload you started with
• Measure all performance aspects with Arm Forge Professional

Examples:
$> map -profile mpirun –n 48 ./example

21 © 2019 Arm Limited

Arm MAP Overview
A lightweight sampling-based profiler for large scale jobs

Core Features

• MAP is a sampling based scalable profiler
• Built on same framework as DDT
• Parallel support for MPI, OpenMP
• Designed for C/C++/Fortran

• Designed for simple ‘hot-spot’ analysis
• Stack traces
• Augmented with performance metrics

• Lossy sampler
• Throws data away – 1,000 samples / process
• Low overhead, scalable and small file size

Performance Metrics

• Time classification
• Based on call stacks
• MPI, OpenMP, I/O, Synchronization

• Feature-specific metrics
• MPI call and message rates

– (P2P and collective bandwidth)
• I/O data rates (POSIX or Lustre)
• Energy data (IPMI or RAPL for Intel)

• Instruction information (hardware counters)
• x86 – instruction breakdown + PAPI
• aarch64 – perf metric for hardware counters

22 © 2019 Arm Limited

Hardware Performance Metrics on Arm
MAP uses perf or PAPI to gather data.

• On x86 MAP reports on instruction mix
• CPU, vectorization, memory, etc
• Arm are researching ways to provide the same

• Instruction activity via perf
• Harder to read / action
• Raw rates presented – not interpolated

• Welcome your feedback to improve this

23 © 2019 Arm Limited

Python Profiling
From 19.1

New support for
Python applications

• Native Python

• Cython Interpreter

• Called C/C++ code

24 © 2019 Arm Limited

Custom metrics interface
• MAP supports the development of user metrics
• We provide a custom metric interface

• API for safe calls to common functions

• Let’s you develop your own metrics of interest
• Link to application metrics (units / s, error values)
• Link to libraries (specialist communication or I/O)
• System metrics (custom energy monitors)

• Integrates directly into MAP and Performance Reports
• XML files for aggregation methods

• Need to consider overheads and thread safety

25 © 2019 Arm Limited

Custom metric example: MUSCLE2 & LU error terms
https://github.com/arm-hpc/custom-metrics

• Instrumentation of MUSCLE2 library

• Record communication volumes and times

• Data collected along with ‘normal’ MAP metrics

• Customized application
instrumentation, e.g. NPB LU

• Record error terms of solve

• Plot over time and step count for
optimisation

26 © 2019 Arm Limited

Arm MAP cheat sheet
Generate profiles and view offline

• Load the environment module
• $ module load forge

• Prepare the code
• $ mpicc -O -g myapp.c -o myapp.exe
• $ mpfort -O -g myapp.f -o myapp.exe

• Offline: edit the job script to run Arm MAP in “profile” mode
• $ map --profile mpirun ./myapp.exe arg1 arg2

• View profile in MAP:
• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map
• (or load the corresponding file using the remote client connected to the remote system or locally)

27 © 2019 Arm Limited

MAP command line options
$ map --help
Arm Forge 18.2.1 - Arm MAP

Usage: map [OPTION...] [PROGRAM [PROGRAM_ARGS]]
map [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]
map [OPTION...] [MAP_FILE]

--connect Reverse Connect (launch as a server and wait for the GUI to connect)
--cuda-kernel-analysis Analysis of the CUDA kernel source code lines
--list-metrics Display metrics IDs which can be explicitly enabled or disabled.
--disable-metrics=METRICS Explicitly disable metrics specified by their metric IDs.
--enable-metrics=METRICS Explicitly enable metrics specified by their metric IDs.
--export=FILE.json Exports a specified .map file as JSON
--export-functions=FILE Export all the available columns in the functions view to a CSV file (use --profile)
--select-ranks=RANKS Select ranks to profile.
--mpiargs=ARGUMENTS command line arguments to pass to mpirun
-n, --np, --processes=NUMPROCS specify the number of MPI processes
--nodes=NUMNODES configure the number of nodes for MPI jobs
--procs-per-node=PROCS configure the number of processes per node
--profile run through program without user interaction

28 © 2019 Arm Limited

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
• Analyses data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous

integration)
• Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm

29 © 2019 Arm Limited

Arm Performance Reports
A high-level view of application performance with “plain English” insights

30 © 2019 Arm Limited

Understand application behaviour now
Set a reference for future work

• Choose a representative test cases with known results
• Analyse performance on existing hardware (e.g. x86)
• with Arm Performance Reports
• Test scaling and note compiler flags

• Example:
• $> perf-report mpirun –n 16 mmult.exe

31 © 2019 Arm Limited

Arm Performance Reports Metrics
Lowers expertise requirements by explaining everything in detail right in the report.

Multi-threaded
parallelism

SIMD
parallelism

Load
imbalance

OMP
efficiency
System
usage

32 © 2019 Arm Limited

Arm Performance Reports cheat sheet
Generate text and HTML reports from application runs or MAP files

• Load the environment module:
• $ module load reports

• Run the application:
• perf-report mpirun -n 8 ./myapp.exe

• … or, if you already have a MAP file:
• perf-report myapp_8p_1n_YYYY-MM-DD_HH:MM.txt

• Analyze the results
• $ cat myapp_8p_1n_YYYY-MM-DD_HH:MM.txt

• $ firefox myapp_8p_1n_YYYY-MM-DD_HH:MM.html

33 © 2019 Arm Limited

Performance Reports command line options
$ perf-report --help
Arm Performance Reports 18.2.1 - Arm Performance Reports

Usage: perf-report [OPTION...] PROGRAM [PROGRAM_ARGS]
perf-report [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]
perf-report [OPTION...] MAP_FILE

--list-metrics Display metrics IDs which can be explicitly enabled or disabled.
--disable-metrics=METRICS Explicitly disable metrics specified by their metric IDs.
--enable-metrics=METRICS Explicitly enable metrics specified by their metric IDs.
--mpiargs=ARGUMENTS command line arguments to pass to mpirun
--nodes=NUMNODES configure the number of nodes for MPI jobs
-o, --output=FILE writes the Performance Report to FILE instead of an auto-generated name.
-n, --np, --processes=NUMPROCS specify the number of MPI processes
--procs-per-node=PROCS configure the number of processes per node for MPI jobs
--select-ranks=RANKS Select ranks to profile.

Compute
Optimization with

Arm MAP

35 © 2019 Arm Limited

CCC and the ORNL GPU Hackathon @ Pawsey
Quantum collisions in atomic and molecular physics

• CCC: Quantum mechanics
• Fusion energy
• Laser science
• Lighting industry
• Medical imaging / therapy
• Astrophysics

• Igor Bray, Head of Physics and Astronomy, and the
Theoretical Physics Group, in the Faculty of Science
and Engineering, at Curtin University

36 © 2019 Arm Limited

Initial Profile

37 © 2019 Arm Limited

Load balancer is imbalanced?

• Before:
• 0 8 0 -10 199 329 492 1.21 13530 0 89 -1 91%

LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
• 1 8 0 -7 591 573 872 1.97 45150 0 350 0 80%

LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
• 2 8 0 -16 894 762 1153 2.28 77028 0 607 1 86%

LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
• 3 8 0 -24 916 886 1331 2.05 99681 0 766 2 91%

LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
•

38 © 2019 Arm Limited

Initial Profile

Surprise! Didn’t expect that.

39 © 2019 Arm Limited

Results and Final Profile

40 © 2019 Arm Limited

Results and Final Profile

41 © 2019 Arm Limited

Balanced load balancer

• Before:
• 0 8 0 -10 199 329 492 1.21 13530 0 89 -1 91% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
• 1 8 0 -7 591 573 872 1.97 45150 0 350 0 80% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
• 2 8 0 -16 894 762 1153 2.28 77028 0 607 1 86% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
• 3 8 0 -24 916 886 1331 2.05 99681 0 766 2 91% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
•

• After:
• 0 8 0 -10 174 329 492 1.06 13530 0 85 -1 93% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
• 1 8 0 -11 415 577 872 1.40 43956 0 340 0 97% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
• 2 8 0 -11 616 757 1153 1.55 79003 0 592 1 97% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
• 3 8 0 -12 667 874 1331 1.46 105111 0 734 2 96% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff
•

I/O Optimization
with Arm MAP

43 © 2019 Arm Limited

Why does I/O have such a huge impact on performance?
I/O has the potential to make or break the performance of the whole system.

• A shared resource on practically all HPC systems.
• Bandwidth to disk is shared between processes.
• Bandwidth to network is shared between nodes.

• Has the potential to affect the performance of other users' jobs.
• Data are physically located outside the compute node.
• Using shared I/O outside the compute node has an impact on the

performance of other users' jobs.
• Even if other users are not using the shared filesystem, communicating

with the filesystem over the network can affect other user’s inter-node
communications (e.g. MPI).

• The slowest tier of the memory hierarchy.
• Small mistakes in I/O can cost more than huge mistakes on-chip
• Simple, low effort optimizations in I/O will pay out more than high effort

optimizations on-chip.

44 © 2019 Arm Limited

Reduction isn’t an option: have to optimize I/O
Models require high resolutions to accurately describe physical conditions.

Credit: NASA GMAO, Christoph Keller.

https://gmao.gsfc.nasa.gov/research/science_snapshots/2017/hi-res_atmos_chem_comp.php

46 © 2019 Arm Limited

Simple approaches to parallel I/O
Simple approaches work for small applications, but typically don’t scale.
• 1 – 1: Master and workers

• A master process performs I/O on behalf of many workers.
• Collective operations (e.g. MPI_Gather, MPI_Scatter) move data

to/from workers.
• Performance bottleneck at the master.

• N – N: Every process for itself
• Each process reads/writes it’s own data in a uniquely named file.
• Large number of open files can quickly degrade performance.

Credit: Argonne National Lab

0

50

100

0-4k 4k-16k 16k-160k

%
 C

or
e-

ho
ur

s

N-N

MPI-IO

https://www.youtube.com/redirect?event=video_description&v=P-ivEZ4GyUg&redir_token=nqA4arn8Q_ZWZBITiQGlup20iLJ8MTUzMTMwNjA2NEAxNTMxMjE5NjY0&q=http://extremecomputingtraining.anl.gov/files/2017/08/ATPESC_2017_Track-3_02_8-4_9am_Carns-IO_Transformations.pdf

47 © 2019 Arm Limited

Treating parallel I/O like shared memory
Use a library like MPI-IO or HDF5 for optimal portability and performance.

• N – 1: Multiple writers to same resource
• Many processes read/write to the same resource, e.g. a file.
• Files broken up in to lock units; boundaries determined by system.
• Clients must obtain locks before performing I/O.
• Enables caching: as long as client holds the lock the cache is valid.

• N – M: Cooperating gangs
• Groups of processes combine to operate on shared resources.
• Mirroring physical hardware infrastructure can improve performance.
• Implementation best left to the libraries.
• Balance gang size against available bandwidth.

48 © 2019 Arm Limited

Understand your I/O system
Use portable, cross-platform tools and libraries.
• Storage systems host filesystems

• Lustre, GPFS, BeeGFS: POSIX-compliant block storage designed for scalability.
• Ceph: Object storage, block storage, and POSIX-compliant filesystem.

• Infrastructure hosts storage systems
• The network fabric connects all compute nodes in a predefined (physically hard wired) topology.
• I/O nodes serve multiple compute nodes (potential bottleneck)

• Infrastructure can be optimized for HPC
• Small local (i.e. non-shared) filesystems, possibly in memory (e.g. /dev/shm)
• Burst buffers
• NVDIMMS.

http://lustre.org/
https://www.ibm.com/support/knowledgecenter/en/SSFKCN/gpfs_welcome.html
https://www.beegfs.io/
https://ceph.com/

49 © 2019 Arm Limited

Initial profile shows 9.2% of runtime spent just opening files
16.2% of runtime is I/O, but only 5% is spent in read/write operations.

50 © 2019 Arm Limited

Almost 30% of hotspot runtime is I/O
File open and close operations are very expensive on this filesystem.

• Intermediate files for visualization are being written to disk.
• Fix: write intermediate files to an in-memory filesystem, e.g. /dev/shm.

51 © 2019 Arm Limited

Easy fix: write intermediate files to /dev/shm
Writing temporary files to in-memory filesystem can dramatically improve performance.

52 © 2019 Arm Limited

After fix, only 0.9% of runtime spent in I/O
Writing temporary files to in-memory filesystem can dramatically improve performance.

53 © 2019 Arm Limited

Arm Performance Reports
High-level view of application performance shows low write rate.

54 © 2019 Arm Limited

After the fix, write rate has improved 41.6x
Eliminating file open/close bottleneck has dramatically improved I/O performance.

55 © 2019 Arm Limited

Initial profile of CloverLeaf shows surprisingly unequal I/O

Each I/O operation should take about the same time, but it’s not the case.

56 © 2019 Arm Limited

Symptoms and causes of the I/O issues
Sub-optimal file format and surprise buffering.

• Write rate is less than 14MB/s.

• Writing an ASCII output file.

• Writes not being flushed until buffer is full.
• Some ranks have much less buffered data than others.

• Ranks with small buffers wait in barrier for other ranks to finish flushing their buffers.

57 © 2019 Arm Limited

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

58 © 2019 Arm Limited

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

• Replace Fortran write statements with HDF5 library calls.
• Binary format reduces write volume and can improve data precision.

• Maximum transfer rate now 75.3 MB/s, over 5x faster.

• Note MPI costs (blue) in the I/O region, so room for improvement.

59 © 2019 Arm Limited

Advanced I/O investigation of Lustre on Archer
Simultaneously view system-level and application-level performance.

• Show data from Lustre client logs along with application data

• iPIC3D: kinetic simulation of plasma
• Fully 3D implicit particle-in-cell (PIC)
• C++ and MPI
• Intermediate simulation results saved in VTK binary files, single file per

quantity
• Checkpointing done through HDF5 to individual files per process
• Field values saved using collective MPI-IO to single file

60 © 2019 Arm Limited

Available performance data
Use MAP’s ability to measure filesystem performance at the system and application levels

System level performance data

• Lustre logs: each read, write, or
metadata operation recorded from
each Lustre client.

• Aggregate I/O data for precise
bandwidth figures for read/write at
any moment in time.

• Max/min/mean bandwidth.

• Scheduler logs: application run start
and end time and assigned nodes.

Application level performance data

• Approximate I/O bandwidth in a
timeline.

• Approximate classification of I/O
instructions (methods).

• In block-synchronous approach, it is
possible to identify different I/O phases.

61 © 2019 Arm Limited

MAP aligns the system timeline with the application timeline
Lustre data is read from the lustre client’s log files, while application data is read directly.

Checkpoint I/O corresponds
to spike in Lustre write rate

N-N file read shows spike in
file open/read operations.

62 © 2019 Arm Limited

We can focus on each I/O operation individually
Select a portion of the application timeline to view the source code performing I/O.

63 © 2019 Arm Limited

MAP’s timeline shows I/O overlapping with communication
We see elevated Lustre write rate when writing checkpoint restart files in HDF5.

64 © 2019 Arm Limited

It’s possible to overlap different I/O approaches
HDF5 and VTK I/O operations occur at the same time on different ranks.

Arm Compilers
for HPC

66 © 2019 Arm Limited

GCC is a first-class compiler in the Arm ecosystem
Arm the second largest contributor to the GCC project

• On Arm, GCC is a first class compiler
alongside commercial compilers.

• GCC ships with Arm Compiler for HPC.
• Use GCC 7 or later! GCC 8+ preferred.

67 © 2019 Arm Limited

Arm’s commercially-supported C/C++/Fortran compiler

Tuned for Scientific Computing, HPC and Enterprise workloads

• Processor-specific optimizations for various server-class platforms

• Optimal shared-memory parallelism via Arm’s optimized OpenMP runtime

Linux user-space compiler with latest features

• C++ 14 and Fortran 2003 language support with OpenMP 4.5

• Support for Armv8-A and SVE architecture extension

• Based on LLVM and Flang, leading open-source compiler projects

Commercially supported by Arm

• Available for a wide range of Arm-based platforms running leading Linux

distributions – RedHat, SUSE and Ubuntu

Compilers tuned for Scientific

Computing and HPC

Latest features and

performance optimizations

Commercially supported

by Arm

68 © 2019 Arm Limited

C/C++
Frontend

Fortran
Frontend

Optimizer Armv8-A
code-gen

SVE
code-gen

Clang based LLVM based

PGI Flang based

Enhanced optimization for
Armv8-A and SVE

C/C++ Files
(.c/.cpp)

Fortran Files
(.f/.f90)

Arm C/C++/Fortran Compiler

Armv8-A
binary

SVE
binary

LLVM IR LLVM IR
IR Optimizations

Auto-vectorization

LLVM based

LLVM based

Language specific frontend Architecture specific backendLanguage agnostic optimization

Arm Compiler is built on LLVM, Clang and Flang

69 © 2019 Arm Limited

Arm Compiler for HPC: Back-end

LLVM7

• Arm pulls all relevant cost models and optimizations into the downstream codebase.

• Marvell have committed to upstreaming the cost models for future cores to LLVM.

• Auto-vectorization via LLVM vectorizers:
• Use cost models to drive decisions about what code blocks can and/or should be vectorized.

• As of October 2018, two different vectorizers from LLVM: Loop Vectorizer and SLP Vectorizer.

• Loop Vectorizer support for NEON (ThunderX2) and SVE:

• Loops with unknown trip count

• Runtime checks of pointers

• Reductions

• Inductions

• “If” conversion

• Pointer induction variables

• Reverse iterators

• Scatter / gather

• Vectorization of mixed types

• Global structures alias analysis

https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html

70 © 2019 Arm Limited

Arm’s Optimized OpenMP Runtime
Arm actively optimizes OpenMP runtime libraries for high thread counts

• Large System Extension (LSE) atomic update instructions
• Atomics dramatically reduce runtime overhead, especially at high thread counts.

• Used extensively in the OpenMP runtime shipped with the Arm HPC Compiler.
• Also available in GNU’s runtime.

• Synchronization constructs optimized for high thread counts.
• Designed with hundreds of threads in mind.
• Uses hardware features whenever available.

Zo
ne

s p
er

 S
ec

on
d

Number of threads

Lulesh – size 40

armclang 18.0 gcc 7.1

71 © 2019 Arm Limited

Compile and link your application on Arm
Application porting is a boring, immediate task

• Modify the Makefile/installation scripts to ensure compilation for aarch64 happens
• Compile the code with the Arm Compiler for HPC
• Link the code with the Arm Performance Libraries

• Examples:
• $> armclang -c –I/path/armpl/include example.c -o example.o
• $> armclang example.o -L/path/armpl/lib -larmpl_lp64 -o example.exe -lflang -lflangrti -lm

Arm Compiler for HPC GNU Compiler
armclang gcc

armclang++ g++

armflang gfortran

72 © 2019 Arm Limited

Optimized BLAS, LAPACK and FFT

Commercial 64-bit Armv8-A math libraries
• Commonly used low-level math routines - BLAS, LAPACK and FFT
• Provides FFTW compatible interface for FFT routines
• Batched BLAS support

Best-in-class serial and parallel performance
• Generic Armv8-A optimizations by Arm
• Tuning for specific platforms like Cavium ThunderX2 in collaboration with

silicon vendors

Validated and supported by Arm
• Available for a wide range of server-class Arm-based platforms
• Validated with NAG’s test suite, a de-facto standard

Best in class performance

Validated with
NAG test suite

Commercially supported
by Arm

73 © 2019 Arm Limited

Validated with NAG’s test suite

NAG, the Numerical Algorithms Group are a company from
Oxford, UK, specialising in developing mathematical routines
They have been around for almost 50 years and have been
involved with almost all vendor maths libraries
They provided us with their validation test suite

• This enables us to test every build of the library to ensure that all changes we make still provide
numerical accuracy to the end-user

NAG are also under contract with us to provide support if we discover any issues with
code they have supplied
They also provide us updated code-drops when new versions of the base libraries are
released

74 © 2019 Arm Limited

Commonly used low-level math routines

The libraries we include are known as BLAS, LAPACK and FFT
Most routines come in a four varieties (where appropriate)

– Single precision real : Routines prefixed by ‘S’
– Double precision real : Routines prefixed by ‘D’
– Single precision complex : Routines prefixed by ‘C’
– Double precision complex : Routines prefixed by ‘Z’

• The rest of the name (normally) describes something about what the routine does
– E.g. the matrix-matrix multiplication routine DGEMM is a

§ D – Double precision
§ GE – Matricies given in GEneral format
§ MM – Matrix-Matrix multiplication is performed

75 © 2019 Arm Limited

BLAS

BLAS, the Basic Linear Algebra Subroutines, is a standard API
• It is provided on all systems, used by a wealth of scientific codes for vector and matrix maths

• It was designed for Fortran, but is callable from all languages

These routines are come in three levels
• BLAS level 1 – vector-vector operations, e.g. DCOPY, DAXPY, DDOT

• BLAS level 2 – matrix-vector operations, e.g. DGEMV, DTRMV, DGER

• BLAS level 3 – matrix-matrix operations, e.g. DGEMM, DTRMM, DTRSM

42 BLAS routines in total

Providing incredibly high performing versions of these routines is the team’s main work

76 © 2019 Arm Limited

LAPACK

LAPACK, the Linear Algebra Package, is a another standard API
• It is provided on all systems, used by a wealth of scientific codes for solving equation systems
• It was designed for Fortran, but is callable from all languages
• We currently support LAPACK 3.7.0

The routines in LAPACK are normally build on BLAS routines so work we do on BLAS
routines increases performance of particular LAPACK routines, too
There are now around 1700 LAPACK routines

• Most we do not touch, just using the reference version from Netlib
• Certain ones are very widely used, and these are where we focus our attention
• The key names to look out for are:

– Cholesky factorization : ?POTRF
– LU factorization : ?GETRF
– QR factorization : ?GETQR

77 © 2019 Arm Limited

Fast Fourier Transforms

FFTs are very commonly used in a wide variety of applications. They allow some hard
problems to be transformed into a way that can be solved much more easily.
We ship 44 separate FFT routines, in 1-d, 2-d, 3-d and n-d
FFTs have no standard interface, unlike BLAS and LAPACK

• Instead we have an interface that matches that used by AMD’s ACML library
• We also provide a compatibility layer to allow users to call using the FFTW3 interface
• Support for Basic, Advanced, Guru and MPI interfaces

Our interface is therefore documented on the website (only in a PDF still) and that PDF is
also included in the installation

78 © 2019 Arm Limited

DGEMM – ArmPL 19.0 vs BLIS vs OpenBLAS : Parallel

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 2000 4000 6000 8000

Pe
rf

or
m

an
ce

, M
FL

O
PS

Matrix size, M=N=K

DGEMM - Comparing libraries on 56 threads on Cavium
ThunderX2

ArmPL 19.0

BLIS

OpenBLAS

79 © 2019 Arm Limited

ArmPL 19.0 FFT 3D complex-to-complex DP vs FFTW 3.3.7

0

0.5

1

1.5

2

2.5

3

1 101 201 301 401 501

A
r
m

 P
e

r
f
o

r
m

a
n

c
e

 L
ib

r
a

r
ie

s
 s

p
e

e
d

-
u

p
 o

v
e

r
 F

F
T

W

Length of side for FFTW transform, size NxNxN

Arm Perf Libs better than FFTW

(speed-up > 1)

FFTW better than Arm Perf Libs

(speed-up < 1)

Performance parity

(speed-up = 1)

80 © 2019 Arm Limited

Micro-architectural tuning

In order to achieve the best performance possible on all partner systems we need to do
different micro-architectural tuning
All BLAS kernels are handwritten in assembly code in order to maximise overall
performance
Different micro-architectures sometimes need fundamental differences in the instruction
ordering – or even the instructions used
At run-time this work should all be transparent to the user
However multiple packages are typically available for users to choose from, and they need
to load the appropriate module to set up their paths
Currently available are versions for:

§ A72 § Cavium ThunderX2 § Generic AArch64

81 © 2019 Arm Limited

Math Routine Performance

Normalised runtime

0

0.2

0.4

0.6

0.8

1

1.2

WRF Cloverleaf OpenMX Branson

GCC Arm Arm + libamath

Arm PL provides libamath
• With Arm PL module loaded, include

-lamath in the link line.

• Algorithmically better performance than
standard library calls

• No loss of accuracy

• single and double precision implementations of:
exp(), pow(), and log()

• single precision implementations of:
sin(), cos(), sincos(), tan()

...more to come.

Distribution of https://github.com/ARM-software/optimized-routines

82 © 2019 Arm Limited

Open source libraries for improved performance

Arm Optimized Routines
https://github.com/ARM-software/optimized-routines
These routines provide high performing
versions of many math.h functions
• Algorithmically better performance than

standard library calls
• No loss of accuracy

SLEEF library
https://github.com/shibatch/sleef/
Vectorized math.h functions
• Provided as an option for use in Arm Compiler

Perf-libs-tools
https://github.com/ARM-software/perf-libs-tools

Understanding an application’s needs for
BLAS, LAPACK and FFT calls
• Used in conjunction with Arm Performance

Libraries can generate logging info to help profile
applications for specific case breakdowns

Example
visualization:
DGEMM
cases called

Thank You
Danke
Merci
��

�����
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش
הדות

© 2019 Arm Limited

84 © 2019 Arm Limited

AWS Graviton Cluster: 108.128.237.67
Available for the next 24 hours

• Pick a student number 1 … 20

• Replace XX with your student number

• ssh student0XX@108.128.237.67
• Password: Tr@ining0XX

• Grab a compute node (8 cores per node):

• srun -n 8 --pty $SHELL
• Remember to zero-pad your student number to three places, e.g. “3” becomes “003”

• We strongly recommend you download and install the Arm Forge Remote Client.

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/downloads/download-arm-forge

85 © 2019 Arm Limited

Tutorial Problem

• Matrix-matrix multiplication in C/C++:
• Focus not on understanding the problem, but how to use the Arm toolchain
• Naïve to optimized performance

• Program flow
• Initialize random data
• Perform multiply

• Use of compiler for single core and multi-core application
• Understanding of application performance
• Finish with your codes or other examples

• Mini-apps etc.

86 © 2019 Arm Limited

Matrix-Matrix Multiply: Version 1

• Naïve implementation works on single core
• No consideration of underlying hardware

• How bad is performance? Easier to evaluate when compared to other code

87 © 2019 Arm Limited

Matrix-Matrix Multiply: Version 2

• Add blocking to be able to take advantage of cache

• Have only added one level of blocking, which can take advantage of a single level of
cache only

• Also little bit of loop unrolling to allow re-use of registers

88 © 2019 Arm Limited

Matrix-Matrix Multiply: Version 2

• Add blocking to be able to take advantage of cache

• Performance improvement of greater than 2x at 1024x1024 with 128 block size
• Still tens of seconds to perform a small multiply – bring out the big guns

89 © 2019 Arm Limited

Matrix-Matrix Multiply: Version 3

• Use Arm Performance Libraries
• Addition of –larmpl flag to build command
• Standard BLAS interface

• Approximately 17x speed-up over blocked multiply and 40x over naïve implementation

90 © 2019 Arm Limited

Matrix-Matrix Multiply: Version 4

• Have multiple physical cores available on the system – make use of them

• OpenMP directives added to loops

• Link to parallel version of the Arm Performance Libraries (-larmpl_mp)

91 © 2019 Arm Limited

Matrix-Matrix Multiply: Version 4

• Have multiple physical cores available on the system – make use of them
• Small matrix size means not all threads can be used with simple OpenMP directive
• Arm Performance library utilizes all threads – approximately 100x faster than blocking

approach

92 © 2019 Arm Limited

Matrix-Matrix Multiply: Version 4 (Interlude)

• Time to populate matrices with random data much higher when using OpenMP
• Use Arm Forge (performance analysis toolset) to investigate

• Lots of time spent waiting on the kernel in glibc rand function
• Kernel lock being held means that parallel performance can’t be obtained

93 © 2019 Arm Limited

Matrix-Matrix Multiply: Version 5 (Interlude)

• Update random function to be thread safe implementation (e.g. C++ stdlib functions)

• Can make use of all cores in parallel

94 © 2019 Arm Limited

Matrix-Matrix Multiply: Version 6

• Allow compiler to make better decisions on loop parallelism

• Allows better use of threads – 8x speed-up over not using collapse directive
• Still greater than 10x slower than Arm Performance Libraries

Debug

96 © 2019 Arm Limited

Exercise 1: Fix a simple crash in MPI

Objectives:
• Discover Arm DDT’s interface
• Debug a simple crash in a MPI application interactively
• Use the tool in a cluster environment

Key commands:
• $ cd 01_*/
• Compile the application

– $ make
• Run it!

– $./Run.sh
• Accept the incoming connection!
• Can you find out and fix the bug?

97 © 2019 Arm Limited

Exercise 2: Debug a fatal memory crash

Objectives:
• Use the memory debugging feature
• Diagnose and fix a memory problem

Key commands:
• $ cd 02_*/
• Compile the application with debugging flags

– $ make
• Run it!

– $./Run.sh
• Enable memory debugging in the “Run window”
• Change the amount of checks, enable guard pages
• Can you see the memory issue can you fix it?

98 © 2019 Arm Limited

Exercise 3: Detect memory leaks

Objectives:
• Use the memory debugging feature
• Diagnose and fix a memory leak problem

Key commands:
• $ cd 03_*/
• Compile the application for debugging

– $ make
• Run it!

– $./Run.sh
• Open the resulting *.html file
• Can you see the memory leak?
• Restart the debugger in interactive mode. Can you see any hint from the debugger?

99 © 2019 Arm Limited

Exercise 4: Offline debugging

Objectives:
• Use Arm DDT’s offline mode
• Use the memory debugging feature
• Diagnose and fix a memory leak problem

Key commands:
• $ cd 04_*/
• Compile the application for debugging

– $ make
• Run it!

– $./Run.sh
• Open the resulting *.html file
• Can you see the memory leak?
• Restart the debugger in interactive mode. Can you see any hint from the debugger?

100 © 2019 Arm Limited

Exercise 5: Debug a deadlock

Objectives:

• Witness a deadlock and attach to the running processes

• Use Arm DDT Stack feature

• Use Arm DDT evaluation window

Key commands:

• $ cd 05_deadlock/

• Compile with:

– $ make

• Run the job with 10 processes: it works.

• Run it with 8 processes: it hangs!

• Leave the application run in the queue and attach to it with the debugger

• Observe where it hangs. Can you fix the problem?

101 © 2019 Arm Limited

Exercise 6: Computation Error

Objectives:

• Fix a computation error using the multi-dimensional array viewer (MDA)

• Use the debugger on a MPMD application

• Use breakpoints

Key commands:

• $ cd 06_*/

• Compile the application for debugging

– $ make

• Run it!

– $./Run.sh

• Look at the output log files, you should see NaN results which indicate a computation error

• Use the MDA to visualise the result data and find the source of the problem.

102 © 2019 Arm Limited

Arm Forge and MVAPICH2

• To use DDT’s memory debugging features, set the environment variable
MV2_ON_DEMAND_THRESHOLD to the maximum job size you expect. This setting

should not be a system wide default; it should be set as needed.

• To use mpirun_rsh with DDT, from File → Options go to the System page, check

Override default mpirun path and enter mpirun_rsh. You should also add -
hostfile <hosts>, where <hosts> is the name of your hosts file, within the

mpirun_rsh arguments field in the Run window.

• To enable message Queue Support MVAPICH 2 must be compiled with the flags

--enable-debug --enable-sharedlib. These are not set by default.

• MVAPICH2 MPI programs cannot be started using Express Launch syntax.
• Do use: “ddt ./a.out” and configure MPI launch parameters in the GUI.

• Don’t use: “ddt mpirun <mpi_args> ./a.out”

